Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins
نویسندگان
چکیده
The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.
منابع مشابه
Applying conserved peptides of NS1 Protein of avian influenza virus to differentiate infected from vaccinated chickens
Avian influenza (AI) is a highly contagious disease in poultry and outbreaks can have dramatic economic and health implications. For effective disease surveillance, rapid and sensitive assays are needed to detect antibodies against AI virus (AIV) proteins. In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of “DIVA” vaccination strategies, ...
متن کاملDifferent Modes of Retrovirus Restriction by Human APOBEC3A and APOBEC3G In Vivo
The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed,...
متن کاملکاربری پروتیینهای جدید در ساخت واکسن استافیلوکوکوس اورئوس
Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...
متن کاملIn silico mutational analysis and identification of stability centers in human interleukin-4
Interleukin-4 (IL-4) is a multifunctional cytokine that plays a critical role in apoptosis, differentiation and proliferation. The intensity of IL4 response depends upon binding to its receptor, IL-4R. The therapeutic efficiency of interleukins can be increased by generating structural mutants having greater stability. In the present work, attempts were made to increase the stability of human I...
متن کاملRab11 in Disease Progression
Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006